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 Abstract 

In single-case research, the multiple baseline design is a widely used approach for evaluating the 

effects of interventions on individuals. Multiple baseline designs involve repeated measurement 

of outcomes over time and the controlled introduction of a treatment at different times for 

different individuals. This article outlines a general approach for defining effect sizes in multiple 

baseline designs that are directly comparable to the standardized mean difference from a 

between-subjects randomized experiment. The target, design-comparable effect size parameter 

can be estimated using restricted maximum likelihood together with a small-sample correction 

analogous to Hedges’ g. The approach is demonstrated using hierarchical linear models that 

include baseline time trends and treatment-by-time interactions. A simulation compares the 

performance of the proposed estimator to that of an alternative, and an application illustrates the 

model-fitting process.  

 

Substantive keywords: Special Education, Counseling, School Psychology 

Methodological keywords: single-subject research; effect size; meta-analysis; hierarchical linear 

model 
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Design-Comparable Effect Sizes in Multiple Baseline Designs:  

A General Modeling Framework 

 

One of the central questions in any quantitative research synthesis is how to operationally 

define the effect size, the basic unit of analysis in a meta-analysis (Cooper, 2009). Cohen’s d is a 

common choice for two-group comparative experiments with continuous outcomes. This effect 

size has the form of a ratio where the numerator represents a treatment effect (in the scale of the 

outcome variable) and the denominator represents the standard deviation of the control group (or 

of both the control and treatment groups, if these are assumed to be the same in the population). 

In simple experimental designs, these quantities are unambiguous. However, the choice of effect 

size is less simple in more complex designs, even if one considers only effect sizes of the same 

form as Cohen’s d. In cluster-randomized experiments with two or more levels, several different 

d-type effect sizes may be considered, each of which standardizes the treatment effect by a 

different combination of variance components  (Hedges, 2007, 2011). Similarly, longitudinal 

designs identify multiple components of variation, including within-individual variation across 

measurement occasions and variation across individuals; further, both the treatment effect and 

the variance components might change over the time period being studied.  

The choice of effect size involves, implicitly or explicitly, an assumption about the 

comparability of results from different studies that may use various measurement instruments, 

inclusion criteria, or experimental designs. In synthesizing results from studies that use different 

types of designs, one would like to use an effect size that is on the same metric across all of 

them. Such an effect size, which we call design-comparable, is desirable so that contrasts 

between and averages across results from different types of designs are not confounded by 
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differences in scale. Without design-comparability, a collection of effect sizes will exhibit 

heterogeneity due only to differences in how they are calculated, obscuring substantive 

differences that may exist. Design-comparability thus allows the analyst to adjust for incidental 

aspects of study design and to focus instead on variation that is of scientific interest. This paper 

addresses the question of how to find and estimate design-comparable effect sizes for a certain 

type of experimental design, the multiple baseline design, which falls in the broader category of 

single case designs.  

Single case designs (SCDs) are a class of experiments used to evaluate the effects of 

interventions or treatment programs. Two features characterize the class: (1) repeated 

measurement of an outcome over time on one or more individual cases and (2) identification of 

effects through comparison of each individual’s outcomes in the presence or absence of 

treatment, across different points in time. SCDs are used frequently in fields such as applied 

behavior analysis (Bailey & Burch, 2002), special education research (Horner et al., 2005), 

school psychology (Busse, Kratochwill, & Elliott, 1995), and psychotherapy (Borckardt et al., 

2008).  

The multiple baseline design is the most common type of SCD (Shadish & Sullivan, 

2011; Smith, 2012). The design involves one or more individual cases, on each of which an 

outcome is measured multiple times during a baseline phase. After several measurements, a 

treatment is introduced for one case (but not others) and outcome measurements are continued 

for all cases. Treatment is introduced for a second case at a subsequent time, a third after that, 

and so on, until all cases have received treatment. The treatment is taken to have an effect for a 

given case if the stable pattern of outcomes differs between baseline and treatment phases and if 

the change coincides with the introduction of treatment. The single case design literature 
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describes several types of multiple baseline designs, including multiple baselines across 

individuals, multiple baselines across settings, and multiple baselines within individuals across 

outcomes (Kazdin, 2011); in what follows, we restrict attention to the first of these. 

Meta-analytic synthesis has long been considered as an approach for generalizing from 

single case studies (Center, Skiba, & Casey, 1985; Gorsuch, 1983; Scruggs, Mastropieri, & 

Casto, 1987), yet despite long-standing interest, there is still little consensus regarding how 

single-case studies should be synthesized. Many different effect size metrics have been proposed 

for SCDs, though nearly all are subject to serious criticisms (Beretvas & Chung, 2008; Wolery, 

Busick, Reichow, & Barton, 2010). Among their shortcomings, most of the proposed effect sizes 

are not directly comparable to those from between-subjects designs.  

A design-comparable effect size for single-case designs was proposed by Hedges, 

Pustejovsky, and Shadish (HPS hereafter), who used a certain hierarchical linear model to define 

a d-type effect size index and explicitly demonstrate its equivalence to Cohen’s d from a 

between-subjects randomized experiment. HPS proposed methods for estimating the effect size 

from data collected in treatment reversal designs (Hedges, Pustejovsky, & Shadish, 2012) and 

multiple baseline designs (Hedges, Pustejovsky, & Shadish, 2013). For both designs, the effect 

size estimators were designed to be expressible using closed-form algebra (albeit in formulas that 

are too extensive to describe here) and to be relatively insensitive to estimated nuisance 

parameters. However, HPS considered only a single data-generating model that relied on several 

restrictive assumptions, including that baselines are stable, lacking any trends; that the treatment 

effect can be modeled by a shift in the mean level of the outcome; and that the treatment effect is 

homogeneous across cases. The simple model considered by HPS (MB1, described below) led to 

a correspondingly simple operational definition for the design-comparable effect size, but the 
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strong assumptions entailed by the model limit the set of studies where the effect size described 

by HPS can be applied. In contrast to the posited model, multiple baseline studies frequently 

exhibit trends in both baseline and treatment phases and single case researchers often operate in 

contexts with high inter-case variability (Hersen, 1990). Furthermore, it is not apparent how the 

HPS estimation approach could be extended to more general models.  

In this paper, we demonstrate how the general logic behind the HPS effect size can be 

applied to define and estimate similar d-type effect sizes under a variety of more flexible models 

for multiple baseline designs. Specifically, we focus on models that incorporate linear time 

trends (either homogeneous or varying across cases) and heterogeneous treatment effects, though 

the same general logic is applicable in principle to more complex models as well. These models 

entail treatment effects and variance components that may change over the time, both of which 

make effect size definition more complicated. We address these complications by 

operationalizing an effect size that is specific to both a fixed length of treatment and a fixed point 

in time. After describing an approach to modeling and effect size definition, we describe a 

method for estimating these effect sizes from multiple baseline designs. The proposed effect size 

estimator, based on a small-sample correction to the restricted maximum likelihood estimator, is 

more flexible and more readily extensible than the HPS estimator. A later section summarizes 

the results of several simulation studies that evaluate the small-sample performance of the 

proposed method (full simulation results are available in the supplementary materials). We then 

demonstrate the proposed approach with an application to data from a real multiple baseline 

design. The final section concludes by noting further extensions and outstanding questions. 

Constructing design-comparable effect sizes 
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In this section, we describe how to construct design-comparable effect sizes for multiple 

baseline designs that allow direct comparisons to Cohen’s d effect sizes from between-subjects 

designs. We first lay out notation and specify the design of a multiple baseline experiment. We 

then discuss our general modeling framework and method of defining a target, design-

comparable effect size parameter.  

Consider a set of m individuals and N measurement occasions; for purposes of exposition, 

we assume that the measurement occasions are equally spaced. Procedurally, a multiple baseline 

design across individuals entails the following. For case i, Ti measurements are made during a 

baseline phase (in the absence of treatment), where 0 ≤ Ti ≤ N. The case then receives treatment, 

and N – Ti further outcome measurements are made during the treatment phase. If no 

observations are missing, the data generated from this design consist of m × N measurements, 

which we denote Yij for i = 1,…,m and j = 1, …, N. The key feature of the multiple baseline 

design is that not all cases have the same point of treatment introduction, so Th ≠ Ti for one or 

more pairs h, i = 1, ..., m.  

 Our approach requires specification of an appropriate statistical model for the multiple 

baseline data. In order for the statistical model to be general enough that it also encompasses a 

between-subjects experiment, the model must be causally interpretable at the level of the 

individual case, must specify a treatment assignment mechanism, and must capture variation 

both within and between cases. By causally interpretable, we mean that the model clearly 

describes not just the observed outcome data, but also the outcomes that would be observed 

under variations in how treatment is assigned. These are often called potential outcomes 

(Holland, 1986). An interpretable model entails writing the outcome for case i at time j as a 

function of the treatment assignment time for that case, that is, as Yij(Ti). In a multiple baseline 
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design, the treatment phase for case i might begin after any given measurement occasion, so that 

Ti takes values from 0, ..., N, where Ti = 0 if the case is assigned to treatment just prior to the first 

outcome measurement.  

A causally interpretable model describes many data points, only some of which are 

observed in a given design. It will often be reasonable to assume that outcomes do not depend on 

future treatment assignment times—that is, the outcome on Monday does not depend on whether 

a case will receive the treatment on the next Thursday versus on the next Friday. Even with this 

restriction, a causally interpretable model for case i describes many potential outcome values, 

only a few of which are observed in a given design: consider that Yij(Ti) for j = 1, ..., N and Ti = 

0, ..., j involves a total of N × (N + 1) / 2 unique values, only N of which can be observed. We 

specify a simple, causally interpretable case-level model in the following section.  

Given a causally interpretable model, one must also consider the relationship between the 

potential outcomes and the data actually observed in the experiment. In all of the models 

considered below, we assume that the baseline phase lengths T1,…, Tm are assigned 

independently of the potential outcomes, as would be the case with random assignment of cases 

to intervention start times. This excludes certain mechanisms such as introducing the treatment 

first to the case with the highest baseline outcomes, second to the case with the next-highest 

baseline, etc. Such non-random assignment mechanisms introduce substantial complications that 

will need to be addressed in future work. 

Finally, for the statistical model to be sufficiently general, it must also make explicit 

assumptions about variation across cases. This can be done quite naturally using the framework 

of hierarchical models, an approach that has recently begun to receive increased attention for the 

analysis and meta-analysis of single case designs.  
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A sufficiently general statistical model allows one to specify precisely a design-

comparable effect size parameter. To describe this effect size, it is helpful to consider a 

hypothetical, between-subjects experiment, in which treatment assignment begins at a fixed point 

in time, a set schedule of treatment follows, and outcomes are measured at a fixed, later point in 

time. Though this is clearly a stylization of how any actual experiment occurs, it is nonetheless 

useful in that it makes apparent how a design-comparable effect size can depend on the specified 

time-points.  

Imagine a between-subjects experiment in which treatment begins immediately following 

a certain measurement occasion A (the implementation time) and in which outcomes are 

measured on all units at a later time B (the follow-up time or end-point). For multiple baseline 

designs, these design parameters are all that is needed to describe a design-comparable effect 

size. Once the time-points are specified, a design-comparable d-type effect size is given by 

 
   

 

E E

Var

( ) ( )

( )

iB iB

AB

iB

Y

N

Y

Y

A N
 


. (1) 

This parameter represents the difference between the average outcome if treatment is introduced 

at time A and the average outcome if treatment is never introduced, divided by the standard 

deviation of the outcome if treatment is never introduced, where all outcomes are measured at a 

fixed time B. It is the same parameter as the estimand of Cohen’s d from the hypothetical 

between-subjects experiment with implementation time A and follow-up time B. Note that the 

definition of AB  relies on having a causally interpretable model for the data, in order for the 

quantities YiB(A) and YiB(N) to be defined. In each model considered below, we will re-express 

the general parameter defined by (1) in terms of model components. As will be seen, in some 

models the effect size may depend only on B - A, only on B, or on both A and B. 
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Having outlined our general approach to constructing comparable effect sizes for 

multiple baseline designs, we now turn to the details. The next section describes several model 

specifications for multiple baseline designs and demonstrates how the general approach is 

applied in each case to find the effect size parameter. The following section discusses estimation 

of the effect size parameter. 

Models and effect size parameters 

This section presents a catalog of model specifications for multiple baseline designs, 

along with the corresponding effect size parameters. We write the models using a two-level 

formulation similar to that used by Singer and Willett (2003), where level one (the within-case 

level) describes a regression model for the ith individual and level two (the between-case level) 

describes how the within-case regression coefficients vary across cases. As will be seen, the 

specifications under consideration can all be written using the same within-case assumptions; 

only the between-case assumptions change.  

The within-case assumptions 

Our general framework requires a within-case model that is causally interpretable. We 

therefore specify a structural model where the outcome Yij is a function of treatment assignment 

time Ti, as follows: 

         0 1 2 3 1( ) 1ij i i i i i i i i ijY j T j jT C T j T            , (2) 

Here and following, 1(j > Ti) is an indicator variable equal to 0 for j ≤ Ti and to 1 for j > Ti. 

Equation (2) is a piece-wise linear regression model, a very common specification for analysis of 

multiple baselines (Center et al., 1985; Gottman, 1981; Huitema & McKean, 2000). In this 

model, time is taken to be equivalent to measurement occasion and is centered at the constant C.  
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To interpret the coefficients, it is helpful to first consider the form of the regression if 

case i were to remain in the baseline phase for the entire study, so that Ti = N. The model then 

reduces to  0 2( )ij i i ijNY j C     , and it can be seen that β0i represents the average level of 

the outcome at time j = C in the absence of treatment and β2i represents the linear change in the 

outcome per measurement occasion, also in the absence of treatment. For arbitrary Ti, β1i and β3i 

describe the effect of the treatment on case i. Specifically, β1i represents the immediate change in 

the level of the outcome due to introducing the treatment, while β3i represents additional change 

in the outcome per measurement occasion that is due to the treatment. If the treatment began just 

after time A, then the individual treatment effect for case i at time B would be β1i + β3i (B – A).   

 It remains to describe assumptions about the error term εij. Because measurements on 

each case are taken repeatedly over time, the assumption that the errors are independent is 

considered implausible. In the literature on statistical analysis of single-case designs, the most 

common assumption is that the errors are auto-correlated and follow a stationary, first-order 

auto-regressive process. We follow convention by assuming that the errors have expectation 

zero, variance σ2, and first-order autocorrelation ϕ. The last assumption implies that 

  | | 2,Cov k j

ij ik   . Further, all errors are assumed to be independent across cases, so 

 ,Cov 0hj ik   if h ≠ i. Of course, many other assumptions regarding the error structure could 

be considered (see, e.g., Pinheiro & Bates, 2000, sec. 5.3). Having described the within-case 

assumptions, the remainder of this section examines several between-case specifications that 

make different assumptions about variation across individuals. 

Model MB1: Varying intercepts, fixed treatment effect, no trends 

 HPS considered perhaps the simplest possible model for multiple baseline data, assuming 

that baseline outcomes are stable (lacking trend) and that the treatment causes a shift in the level 
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of the outcome that is constant across individuals. Using the within-case model (2), their model 

is equivalent to assuming that  

 0 00 0 1 10 2 30, 0, ,i i i i i           , (3) 

where η0i is normally distributed with mean zero and variance 2

0 . Here, γ00 is the average level 

of the outcome across individuals in the absence of treatment, η0i = β0i  - γ00 is the deviation from 

this average level for case i, and γ10 is the treatment effect, assumed to be constant across 

individuals.1 The coefficients for the time trends β2i and the time-by-treatment interactions β3i are 

both assumed to be zero. The effect size parameter for MB1 follows by evaluating Expression 

(1) using (2) and (3):  

 10

2 2

0

AB




 



. (4) 

In a later section, we will describe a method for estimating δAB that differs from the one proposed 

by HPS.  

Model MB2: Varying intercepts, varying treatment effects, no trends 

MB1 makes the restrictive assumption that the treatment effect γ10 is constant across 

cases. This assumption can be relaxed by allowing the treatment effect to vary across individuals, 

while retaining the assumptions regarding the stability of baseline and treatment phases (cf. 

Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009). The between-case specification 

becomes:  

 0 00 0 1 10 1 2 3, 0, 0,i i i i i i             , (5) 

where (η0i, η1i) is multi-variate normally distributed, with mean (0, 0) and covariance matrix 

2

0 10

2

10 1

 

 

 
   

 
. 
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Because the effect size is scaled by the standard deviation of the outcome in the absence of 

treatment, allowing β1i to vary randomly does not alter the parameter of interest; instead, its form 

is the same as the effect size under MB1, as given in (4). Though the parameter is identical, the 

assumption that the treatment effect is not constant across individuals has implications for how 

the parameter is estimated.  

Model MB3: Varying intercepts, fixed treatment effect, fixed trends 

 Multiple baseline data often exhibit trends during the baseline phase, treatment phase, or 

both. A slightly less restrictive model than MB1 would allow for trends in both the baseline and 

treatment phase, but assume that those trends are common across individuals. Along with the 

assumption that the treatment has a constant effect across cases, the between-case model 

becomes:  

 0 00 0 1 10 2 20 3 30, , ,i i i i i             ,  (6) 

where 2

0 0 ~ (0, )i N  , as in MB1. The parameters γ00 and η0i have the same interpretation as in 

MB1, but now γ10 represents the immediate change in the outcome after introducing treatment, 

γ20 represents the change in the outcome per measurement occasion in the absence of treatment, 

and γ30 represents additional change in the outcome per measurement occasion due to 

introducing treatment. All of γ10, γ20, and γ30 are assumed to be constant across individuals. Under 

the assumptions of MB3, the effect size parameter is 

 10 30

2 2

0

( )
AB

B A 


 

 



. (7) 

Here, the effect size parameter depends on the difference B – A, the length of time between 

treatment introduction and outcome measurement. However, if B – A is held constant, the 
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parameter does not depend on the choice of B alone, because the variance is constant across 

measurement occasions, regardless of the pattern of treatment assignments. 

Model MB4: Varying intercepts, fixed treatment effects, varying trends 

In some multiple baseline studies, the assumption in MB3 that the baseline slopes are 

constant across cases may itself be overly restrictive. To relax this assumption, let  

 0 00 0 1 10 2 20 2 3 30, , , ,i i i i i i                (8) 

where (η0i, η2i) is multi-variate normally distributed, with mean (0, 0) and covariance matrix 

2

0 20

2

20 2

 

 

 
   

 
. 

Under this model, the design-comparable effect size is 

 10 30

2 2 2 2

0 2 20

( )

( ) 2( )
AB

B A

B BC C

 


   



 




  
. (9) 

This parameter depends on the choice of both A and B, rather than just their difference, because 

the control-group variance changes over time.  

Model MB5: Varying intercepts, varying trends, varying treatment-by-time interaction 

To illustrate how hierarchical models can be tailored to specific contexts, we consider 

one further model here, to be applied in the example presented later. MB5 elaborates on MB4 by 

assuming that the treatment-by-time trend interaction varies across cases, while holding fixed the 

immediate treatment effect (the β1i). The within-case assumptions for this model are identical to 

those in the previous models, as given in (2). The between-case assumptions are as follows:  

0 00 0 1 10 2 20 2 3 30 3, , , ,i i i i i i i                  

where (η0i, η2i, η3i) is multivariate normally distributed, with mean (0, 0, 0) and covariance 

matrix 
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2

0 20 30

2

20 32

2

30 32

3

3

  

  

  

 
 

   
 
 

. 

In other words, in the absence of treatment, cases vary in their average levels of the outcome and 

in their rates of change; furthermore, the treatment has variable effects, altering the rate of 

change by more for some cases and less for others. Finally, note that the design-comparable 

effect size is equivalent to that given in Equation (9), because MB5 differs from MB4 only in the 

variability of the treatment effect, rather than baseline variability. 

Further models 

 The five models presented above are far from an exhaustive list of the possible 

specifications. For example, one might assume in MB3 or MB4 that the time trend is constant 

across phases, so that β3i = 0. Alternately, any of the models might be extended through the 

addition of polynomial time trends. In principle, one could even specify a model in which any or 

all of the within-case regression coefficients vary randomly, though in practice the number of 

randomly varying coefficients will need to be tempered by the number of cases m being 

modeled. Given an extended model, the effect size parameter can be found by evaluating 

Expression (1) under the structural assumptions of that model. 

Estimation methods 

We propose to estimate the effect size parameter by first estimating the model 

components via restricted maximum likelihood (REML), then making a small-sample correction. 

In earlier work, HPS developed specialized estimation approaches that are relatively insensitive 

to the method used for estimating nuisance parameters that are not of direct interest, and which 

provide close-to-unbiased estimates of the effect size parameters. However, the approaches rely 

on restrictive assumptions about the model and data under consideration, making them difficult 
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to generalize for more complex models. By comparison, REML estimation is extensible and 

accessible, in that it can accommodate many different models and is available in many common 

software packages. Because REML estimation is conventional, we focus on the details of effect 

size estimation rather than estimation of the basic model parameters. To begin, we formulate the 

target effect size parameter in general terms. 

The hierarchical models discussed above have two sets of parameters: fixed effects, 

which we denote by γ’s, and variance components, which include the auto-correlation coefficient 

ϕ, the within-case variance σ2, and the random effect covariances denoted by τ’s. Denote the (p × 

1) vector of fixed effects by γ = (γ00,…, γ(p-1)0)
T and the (r × 1) vector that collects all of the 

variance component parameters by ω. Any of the effect sizes described in the previous section 

can then be expressed as the ratio of a linear combination of the fixed effects to the square root 

of a linear combination of the variance parameters. Given an appropriate parameterization of the 

variance components,  

 
T

AB
T

 
p γ

r ω
, (10) 

for suitably chosen (p × 1) vector p and (r × 1) vector r. For example, in MB1, take γ = (γ00, γ10)
T 

and  2 2

0, ,
T

  ω . Setting p = (0, 1)T and r = (1, 0, 1)T makes expression (10) equivalent to 

(4), the effect size defined for MB1. In MB4, take γ = (γ00, γ10, γ20 , γ30)
T and 

 2 2 2

0 2 20, , , ,
T

    ω . For a given choice of A, B, and centering point C, setting p = (0, 1, 0, B – 

A)T and r = (1, 0, 1, [B – C]2, 2[B – C])T makes expression (10) equivalent to (9), the effect size 

defined for MB4. 

Many software packages provide implementations of restricted maximum likelihood 

estimation for hierarchical linear models with auto-correlated residuals, including the nlme 
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package in R (Pinheiro, Bates, DebRoy, & Sarkar, 2012), the xtmixed command in Stata 

(StataCorp, 2011), PROC MIXED in SAS (SAS Institute Inc., 2008), and SPSS version 11.0 and 

following. All of these software packages provide REML estimates of both the fixed effect and 

variance component parameters, as well as an approximate covariance matrix for the fixed 

effects. All of the packages also provide some form of approximate covariance matrix of the 

variance components, though they differ in how this covariance matrix is estimated. Let γ̂  and 

ω̂  denote the REML estimates of the fixed effects and variance components, let the (p × p) 

matrix ˆ( )C γ  denote the estimated covariance matrix of fixed effects, and let the (r × r)  matrix 

ˆ( )C ω  denote the estimated covariance matrix of variance components. 

An initial estimate of the effect size can be formed by substituting the REML estimates 

γ̂  and ω̂  in place of the corresponding parameters in (10), letting  

 
ˆˆ

ˆ

T

AB
T

 
p γ

r ω
. (11) 

This unadjusted effect size estimate is approximately unbiased if the number of cases m is 

sufficiently large. However, for sample sizes typically found in multiple baseline designs, ˆ
AB  

may nonetheless exhibit substantial bias even though γ̂  is exactly unbiased and ω̂  is 

approximately unbiased.  

The bias of ˆ
AB  is analogous to the small-sample bias of the Cohen’s d statistic from a 

between-subjects experiment, which can be corrected using methods described by Hedges 

(1981); the corrected effect size estimate is sometimes referred to as Hedges’ g. 

The exact distribution theory used in Hedges’ g statistic is not available for the present problem, 

due to the presence of additional nuisance parameters among the variance components. Still, one 
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can approximate the sampling distribution of ˆ
AB  with a Student-t distribution, thereby obtaining 

an approximate small-sample bias correction and an approximate expression for the variance of 

the effect size estimate.  

 From a theorem given in Hedges (2007), it follows that the distribution of ˆ
AB  can be 

approximated by a constant κ times a non-central t distribution with ν degrees of freedom, where  

 
ˆ )

ˆ

(T

T
 

γ pp C

r ω
 (12) 

and 
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It follows further that a bias-corrected effect size estimator is given by  

 ( ˆ)AB ABg J   , (14) 

where J(x) = 1 – 3 / (4x – 1). We will call gAB the c-REML effect size estimator. Again 

approximating the distribution of gAB by a non-central t distribution, an estimator for the  

approximate variance is given by 

  
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. (15) 

In a large-sample setting, a (1 – α) confidence interval (CI) for AB  could be constructed 

simply by taking the point estimate plus or minus the product of its standard error and the 

appropriate standard normal critical value. However, given the small number of cases typically 

found in single-case studies, we consider two other alternatives. The first is to construct a 

symmetric CI using a t distribution rather than the standard normal reference distribution:  

 /2,AB gg V t   ,  (16) 
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where tα / 2,υ is the α / 2 critical value from a central t distribution with υ degrees of freedom.  

Alternately, one could again appeal to the non-central t approximation to the distribution of ˆ
AB . 

Cumming and Finch (2001) described the construction of CIs for standardized mean differences 

based on a non-central t distribution. Algina and Keselman (2003) found that such CIs have 

superior coverage to symmetric CIs in both two-sample and repeated measures designs. Let 

 ,tF x   be the cumulative distribution function of a non-central t random variable with ν 

degrees of freedom and non-centrality parameter θ. A (1 – α) CI is then given by [dL, dU], where 

the bounds are defined as the solutions to  

 
 

 
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t AB UF d

F d    

    

 



  (17) 

We compare the small-sample performance of both of these CIs in the next section. 

Small-sample performance 

The estimation methods that we have proposed involve approximating the distribution of 

the REML effect size ˆ
AB  by a non-central t distribution. The small-sample performance of the c-

REML estimator depends on the quality of this approximation, which may in turn depend on the 

particular data-generating model and the design of the study.  In this section, we briefly 

summarize the results of three simulation studies examining the operating characteristics of the 

estimator under varying designs and data-generating models.  

REML estimation methods are applicable in principle to a vast range of models and 

designs, but the scope of the simulations is necessarily much more limited. We address two main 

questions. First, how does the c-REML estimator compare to the effect size estimator proposed 

by HPS for model MB1? Under this simple model, the HPS estimator is nearly unbiased even in 



DESIGN-COMPARABLE EFFECT SIZES   21 

 

designs with small numbers of cases and relatively few measurement occasions; for the c-REML 

estimator to be a viable alternative, it should have comparably small biases. Second, how does 

the proposed c-REML estimator perform under more complex models for multiple baseline 

design, where the HPS estimator is not immediately applicable? To address the latter question, 

we simulated the c-REML estimator under models MB2, which has treatment effects that vary 

across cases, and MB4, which has baseline trends that vary across cases.  

In each simulation, we examined four properties of the proposed estimators. First, our 

foremost concern is with the bias of the point estimator. For purposes of meta-analysis, the 

estimator must be close to unbiased across the entire parameter space, because any remaining 

bias will be propagated through the meta-analysis. Second, we examined the precision of the 

point estimator, as measured by mean squared error (MSE). Third, we examined the relative bias 

of the proposed variance estimator. For purposes of meta-analysis, variance estimates are needed 

in order to assign appropriate weights when estimating grand average effects and meta-

regressions and in order to estimate residual heterogeneity in random-effects models. Finally, we 

considered the actual coverage rates of the symmetric and non-central CIs described in the 

previous section, using conventional 95% coverage levels. Although CI coverage does not bear 

directly on the suitability of an effect size estimator for meta-analysis, a CI for the standardized 

mean difference is useful for characterizing the results of a single study.  

A full description of the simulation designs, procedures, and results, including the tables 

and figures referenced in the remainder of this section, can be found in the supplementary 

materials.  

Comparison of adjusted REML estimators and HPS estimator for MB1 
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The first simulation study compared the performance of the c- REML estimator to that of 

the estimator proposed by HPS under data-generating model MB1, using bias and root mean-

squared error as the criteria. The simulation followed closely the design described in Hedges et 

al. (Hedges et al., 2013). We used a multiple baseline design in which treatment assignment 

times are spread as evenly as possible across the range of measurement occasions while 

maintaining at least 3 measurement occasions within each phase. We looked at two series lengths 

(N = 8 or N = 16) and varied the number of cases from m = 3 to m = 6; both of these dimensions 

are consistent with the sample sizes observed in empirical single-case research (Shadish & 

Sullivan, 2011). We varied the parameters of MB1 over the preponderance of the parameter 

space, using within-case reliability levels ranging from 0.0 to 0.8 and auto-correlation levels 

ranging from -0.7 to 0.7. This range of auto-correlations is consistent with the range of estimates 

from recent empirical single-case studies (Shadish & Sullivan, 2011), although we suspect that a 

narrower range may be more appropriate, given that part of the variability in auto-correlation 

estimates is due to measurement error (Shadish, Rindskopf, Hedges, & Sullivan, 2013).  

The simulation results indicated the c-REML estimator has biases that are quite small and 

comparable to those of the HPS estimator, even at the smallest sample size considered. The bias 

of gAB is no greater than 4.3% in absolute magnitude when estimated based on m = 3 cases; with 

m = 4 or m = 6 cases, the maximum absolute bias is 2.4% or 0.9%, respectively (Figure S1). 

Furthermore, the c-REML estimator has slightly smaller mean-squared error than the HPS 

estimator, on average and across sample sizes (Table S2).  

Turning to variance estimation, we found that the c-REML variance estimator has smaller 

relative bias than the HPS variance estimator, and is less sensitive to the within-case reliability 

and auto-correlation (Figure S2). Averaging across the parameter levels, the variance estimator 
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for gAB tends to over-estimate the true variance by 16% when m = 3 and N = 8, but by just 3% 

when m = 4 and N = 8. Together with the small biases of the point estimator, these results 

suggest that the c-REML estimator is a reasonable alternative to the HPS method for estimating 

effect sizes based on MB1. 

Finally, we found that the symmetric CI tends to have greater than nominal coverage 

while the non-central CI had less than nominal coverage (Figure S3). Across the parameter levels 

and series lengths, the symmetric CI had average coverage ranging from 96.3% when m = 3 to 

95.6% when m = 6, while the non-central CI had average coverage ranging from 91.9% when m 

= 3 to 93.5% when m = 6. When m = 6, the coverage of the symmetric CI ranged from 94.4% to 

97.2% across the levels of the nuisance parameters and series length, while the coverage of the 

non-central CI was more variable, ranging from 91.1% to 95.6%. Overall, the symmetric CI is 

preferable under this model because its coverage is closer to nominal and errs conservatively 

towards over-coverage. 

Performance of the adjusted REML estimator for MB2 

The second simulation examined the performance of the c-REML estimator under data-

generating model MB2, which allows treatment effects to vary across cases. The simulation 

design was identical to the previous simulation, but for the inclusion of an additional factor 

capturing treatment effect heterogeneity. The larger dimension of this model’s parameter space 

prohibited as comprehensive an exploration of the parameter space. In order to moderate 

dimensionality, we limited the treatment effect heterogeneity factor to just two levels (moderate 

and high) and did not include a factor for the correlation between case-specific baseline levels 

and case-specific treatment effects. 
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Results indicated that the bias of the c-REML estimator remains small even when the 

number of cases is small (Figure S5). Across all combinations of parameters and series lengths, 

the absolute bias of gAB is less than 7.3% when m = 3, less than 4.9% when m = 4, and less than 

2.9% when m = 5. In contrast, the bias of the unadjusted REML estimator ( ˆ
AB ) is substantial: as 

much as 36.2% when m = 3, 23.7% when m = 4, and 17.6% when m = 5. Under MB2, the c-

REML estimator appears to have biases small enough to warrant use in meta-analysis, 

particularly for studies with at least four cases.  

The precision of the estimator is somewhat reduced under MB2 relative to MB1, due to 

both the increased variability of the treatment effects and the need to estimate additional variance 

components (Table S4). For instance, across levels of the nuisance parameters, the average MSE 

is 0.198 when m = 4 and N = 8, which is 28% larger than under MB1; the average MSE is 0.120 

when m = 6 and N = 8, which is 30% larger than under MB1. As a point of comparison, a 

Hedges’ g effect size estimate from a balanced, two-group experiment with 24 participants has 

MSE of 0.203 when the population effect size is one. 

The variance estimator based on a non-central t approximation tends to have positive 

relative bias under MB2 (Figure S6). The over-estimation of variance is substantial when the 

number of cases is small, averaging 43% when m = 3 and N = 16. Even at the largest sample 

size, the variance of the effect size is moderately over-estimated, with average relative bias of 

14% when m = 6 and N = 16. If the approximate variance estimator were used to apportion 

weights in the context of a fixed- or random-effects meta-analysis, the weight assigned to gAB 

would tend to be understated relative to the theoretically most efficient weight. This would 

effectively down-weight evidence from single-case designs with very small numbers of cases, in 

a meta-analysis that included evidence from multiple types of designs. Though more accurate 
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variance estimates would certainly be preferable, use of the proposed variance approximation is 

conservative and thus not unreasonable for use in meta-analytic contexts, particularly for studies 

with larger numbers of cases. 

The performance of the symmetric and non-central CIs follows a pattern similar to the 

previous simulation (Figure S7). Averaging across the parameter levels and series lengths, the 

symmetric CI had greater than nominal coverage, ranging from 97.8% when m = 3 to 96.4% 

when m = 6. When m = 6, the coverage rates varied from 93.9% to 97.6% across the levels of the 

auto-correlation, within-case reliability, and series length. Over-coverage is more extreme than 

under model MB1, likely due to over-estimation of the effect size variance. The non-central CI 

had less than nominal coverage, ranging from 93.3% when m = 3 to 94.2% when m = 6; at the 

largest sample size considered, the non-central CI had coverage rates ranging from 92.0% to 

96.3%). As previously, the symmetric CI is preferred on the basis of conservatism.  

Performance of the adjusted REML estimator for MB4 

 The final simulation study examined the performance of the c-REML estimator under 

data-generating model MB4, which allows for baseline trends that vary across cases and a 

change in trend due to treatment (constant across cases). Compared to MB1, MB4 includes 

additional parameters in both the mean specification and the variance components. We used a 

simulation design that was parallel to the design for MB2, but with two modifications. First, we 

replaced the factor capturing treatment effect heterogeneity with a factor capturing baseline trend 

heterogeneity. Second, we also included designs with a larger number of cases (m = 9 and m = 

12). Further details can be found in the supplementary materials.  

Similar to the results for MB2, the bias of the c-REML effect size estimator under MB4 

is surprisingly small (Figure S8). When m = 3, the absolute bias of gAB is less than 5.8% for the 
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shorter series length of N = 8, though it is as large as 12.8% for N = 16. When m = 4, the bias is 

never more than 2.7%, and the average bias across the parameter space is only -0.8%. As with 

MB2, the c-REML estimator is substantially less biased than the unadjusted estimator. Even 

under this more complex model, the bias is small enough that the point estimator should be 

considered suitable for use in meta-analysis, particularly for studies with at least four cases.  

However, the effect size estimator is also very imprecise when the number of cases is 

small (Table S6). Across levels of the nuisance parameters, the average MSE is 0.444 when m = 

4 and N = 8, which is nearly three times larger than under MB1. When m = 6 and N = 8, the 

average MSE is 0.255, which is 177% larger than under MB1 and comparable to the variance of 

Hedges’ g statistic from a balanced, two-group experiment with 20 participants when the 

population effect size is one. 

The proposed variance estimator has substantial relative biases when the number of cases 

is small (Figure S9). Unlike the previous simulation, the variance of the effect size tends to be 

under-estimated in model MB4. The underestimation is more extreme when N = 16; for this 

longer series length, the variance is underestimated by an average of 19% when m = 4, by 13% 

when m = 6, and by 5% when m = 12; the extent of underestimation also varies considerably 

across the parameter space. In model MB4, the variance approximation depends on a multiple of 

the treatment-by-trend interaction γ30, and so may be particularly sensitive to understatement of 

the variance of the fixed effects. In summary, the proposed variance estimator requires a larger 

number of cases (or only a short extrapolation of the treatment-by-trend interaction) to perform 

adequately. Better estimators are needed if the study includes fewer than nine cases, because use 

of the proposed variance approximation for determining fixed- or random-effects meta-analytic 
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weights will tend to be anti-conservative, assigning too much weight to effect size estimates 

from model MB4. 

The coverage rates of the symmetric and non-central CIs differed somewhat from the 

previous simulations. While the symmetric CI had greater than nominal coverage for the shorter 

series length of N = 8, the average coverage rate was less than nominal for the longer series 

length of N = 16 (Figure S10). The coverage of the non-central CI was less than nominal, with 

average coverage ranging from 88% when m = 3 to 92% when m = 6 to 93% when m = 9. When 

m = 9, the coverage rates of the central CI varied from 92.6% to 96.7% across the levels of the 

auto-correlation, within-case reliability, and series length. As previously, the symmetric CI 

should be preferred on the basis of conservatism, but should be taken as only a rough 

approximation when the number of cases is less than six. For both types of intervals, improved 

estimates of the fixed effects covariance matrix would likely improve coverage rates. 

Application 

We now present an application of the proposed effect size parameter and estimation 

methods, focusing in particular on the process of model fitting and comparison. Schutte, 

Malouff, and Brown (2008) evaluated the effect of an emotion-focused therapy program for 

adults with prolonged fatigue using a multiple baseline across individuals. The design included 

13 adults who met clinical criteria for prolonged fatigue. Thus, this study is large compared to 

many multiple baseline designs, yet still small by statistical standards. Cases were measured 

weekly for 2, 5, or 8 weeks in the baseline phase and between 1 and 7 further weeks in the 

treatment phase, with a maximum of 15 consecutive measurements in all. For each case and 

measurement occasion, fatigue severity was measured using a self-reported scale that ranged 

from 1 to 63. Data for participant 4 are excluded from our analysis because nearly all of these 
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measurements are at the upper extreme of the scale, making the assumption of normally 

distributed errors implausible for this case. Data for the remaining m = 12 participants are plotted 

in Figure 1.2 

Visual inspection and preliminary analysis suggested that it would be necessary to 

include time trends in any model for these data. In all of the following models, we use the full, 

piece-wise linear regression specification that allowed non-zero time trends; the models differ 

only in whether the within-case regression coefficients are assumed to be constant across 

individuals or are allowed to vary. In some cases, the effect size parameter depends on the choice 

of time-points A and B for describing the hypothetical between-subjects design. We use A = 2, 

meaning that in a hypothetical between-subjects experiment, the treatment would be introduced 

after the second measurement occasion. We also use B = 9, meaning that the effect size 

parameter measures the effect of B – A = 7 weeks of treatment, the maximum length observed in 

the data. To simplify the calculations, we center the weekly trend at C = 9 weeks, so that the 

within-case intercepts correspond to the average level of the outcome after 9 weeks, in the 

absence of treatment. We used the nlme package in R (Pinheiro et al., 2012) to obtain REML 

estimates. 

 We consider three different models for these data. An initial model assumes that the 

baseline time trends, the initial treatment effects, and the treatment-by-trend interaction are all 

constant across cases, but allows the baseline intercept (the average level of fatigue at week 9) to 

vary across cases. These assumptions correspond to MB 3. Table 1 reports REML estimates of 

the variance components, the fixed effects, and the effect size for this and following models. 

Also, Figure 1 plots predicted trends in the baseline and treatment phases for each case, 

generated using the best linear unbiased predictors of the random effects (for details, see 
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Pinheiro & Bates, 2000). Predicted trends based on MB3 estimates are plotted with solid lines. 

Based on these fitted trend lines and on formal comparisons to the other models under 

consideration, it is apparent that MB3 provides a poor fit; the assumption that baseline and 

treatment trends are constant across cases does not adequately describe these data. 

 Next, we consider allowing the baseline time trend to vary randomly across cases, which 

corresponds to MB4. REML estimates are reported in the second column of Table 1; predicted 

trend lines based on this model are plotted in Figure 1 using dotted lines. A likelihood ratio test 

comparing MB3 to MB4 rejects the simpler model (p = 0.002); visual inspection of the predicted 

trends also suggests an improved fit.  

Based on the REML estimates from MB4, the intervention has a small immediate effect, 

lowering participants’ fatigue scores by 10 .54ˆ 0   scale points, followed by further decreases of 

30 .63ˆ 1   scale points per week. Combined, the treatment effect is -11.97 scale points after 

seven weeks of intervention. This treatment effect estimate is in the same units as the outcome 

measure; to convert it into an effect size, measured in standard deviation units, estimates of the 

model’s variance components are needed. The REML estimate of within-case variance is 

2ˆ 29   squared scale points, assumed to be constant across measurement occasions. The 

between-case baseline variation is much larger: 2

0̂ 96   squared scale points. Recall that the 

between-case variation is specific to a point in time, because MB4 assumes that the baseline 

trends vary across cases. Since we have centered time at week C = 9, 2

0̂  represents the between-

case variation in the average level of the outcome at week 9, in the absence of treatment. 

Therefore, the total variation at week 9 is 2 2

0 125ˆ ˆ   , the square-root of which goes into the 

denominator of the effect size. We calculate the unadjusted effect size as 
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  2 2

10 30 0
ˆ ˆ ˆ ˆ 17 / 1.97 / 125 1.07         standard deviation units. After using the 

estimated degrees of freedom to make a small-sample correction, the adjusted effect size is gAB = 

-1.01 standard deviation units, with a standard error of 0.47. Using the symmetric t approach, a 

95% CI for the effect size is [-2.02,-0.01]. Thus, despite the relatively large number of cases in 

the study, there remains considerable uncertainty about the magnitude of the design-comparable 

effect size. 

We consider one further model for these data. MB5 assumes that baseline intercepts, 

baseline time trends, and treatment-by-time trend interactions all vary across cases, implying a 

covariance matrix for the random effects that has six parameters. With only twelve cases, use of 

REML estimation might be questionable if the goal were to draw inferences about the structure 

of the random effects. However, the simulation evidence that we have presented tentatively 

suggests that for purposes of obtaining a point estimate of the effect size, REML may be a 

reasonable strategy even with such a limited sample of cases.  

The final column of Table 1 reports REML estimates for MB5. REML estimation of this 

model leads to an estimated correlation of very close to one between the random effects of trend 

and treatment-by-trend interaction (i.e., 
2 2

32 2 3
ˆ ˆ ˆ/ 1    ). The likelihood ratio test for MB5 versus 

MB4 is statistically significant (p = 0.030), though this asymptotic test may provide poor 

guidance with only twelve cases.  

Though the estimated fixed effects are very similar to MB4, the estimated variance 

components and effect size are quite different. In particular, the between-case variation is only 

2

0̂ 38   squared scale points, compared to 96 for MB4, and the within-case variation is 2ˆ 23   

squared scale points, compared to 29 for MB4. The unadjusted effect size estimate is 
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.5ˆ 1 0AB    standard deviation units; after the degrees-of-freedom adjustment, gAB = -1.33, with 

a standard error of 0.83 and a 95% symmetric t CI of [-3.29, 0.64]. The point estimate is much 

larger than the corresponding estimate from MB4, due mostly to the much smaller estimate of 

the between-case variation at week 9, which is only partially tempered by the reduced degrees of 

freedom. However, the precision of the estimate is extremely low. Given that this example uses a 

large number of cases for a single-case design, such substantial uncertainty should be anticipated 

when applying MB5 to single-case designs that display variable time trends. 

 

Discussion 

In studies evaluating the causal effects of interventions, an effect size provides a 

summary measure of the magnitude of an intervention’s effect, in a metric that can be compared 

to effects from different studies or of other interventions. Ideally, an effect size should not be 

influenced by the incidental details of a study’s design (such as sample size or pattern of 

treatment assignment), but should capture variability that is of scientific or policy interest. 

Comparability across multiple baseline designs and between-subjects experiments is thus an 

important criteria, as emphasized in several recent discussions of meta-analysis for single case 

research (Horner, Swaminathan, Sugai, & Smolkowski, 2012; Kratochwill et al., 2012).  

This paper has provided a general framework for deriving design-comparable effect sizes 

for treatment effects in multiple baseline studies, which are on the same metric as Cohen’s d 

from a between-subjects randomized experiment. The framework that we have described is both 

extensible, allowing effect size estimation under a variety of different models, as well as 

accessible, in that it can be implemented using standard software. The simulations studies 

provided initial evidence that the c-REML point estimator has reasonably small biases, even in 
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samples with very few cases. Larger numbers of cases are needed to obtain reasonably accurate 

standard errors and CIs when based on models that involve multiple random effects or 

extrapolation of time trends.  

In meta-analytic contexts, inaccurate variance estimates will produce study-specific 

weights that are less than fully efficient and inaccurate estimates of between-study heterogeneity. 

Consequently, meta-analyses that use the proposed effect size and variance estimator should 

consider using robust standard errors (Hedges, Tipton, & Johnson, 2010) rather than relying on 

the model-based standard errors for the average effect size.  

Given the idiographic orientation of single-case research, richly parameterized models 

with multiple components of variation are likely to be appealing on theoretical grounds, yet it is 

precisely these models that are difficult to fit with the number of cases encountered in many 

single-case studies. Other approaches to model fitting may offer some advantage and should be 

investigated further, including in particular fully Bayesian methods with weakly informative 

priors (Baldwin & Fellingham, 2013; Gelman, 2006) or related varieties of penalized likelihood 

methods (Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013). Parametric bootstrapping (Efron 

& Tibshirani, 1998, sec. 6.5) and small-sample corrections for the covariance matrix of fixed 

effect estimates (Kenward & Roger, 1997, 2009) warrant further investigation as well, as they 

may provide better means of estimating the effect size variance and constructing CIs.  

However, more refined estimation procedures are no panacea. A fundamental limitation 

of the framework that we have presented is that design-comparable standardized mean 

differences are likely to be very imprecisely estimated when based on only small samples of 

cases. This is a consequence of the need to estimate a scale parameter (the denominator of the 

effect size) that includes between-case variance components. Another inherent consequence of 
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design comparability is that the operational definition of the target effect size depends on the 

choice of implementation time A and follow-up time B. Such arbitrary dependence may appear to 

be a drawback of the proposed effect size, but we would argue that it may instead indicate that 

the broader modeling assumptions (such as the inclusion of treatment-by-time trend interactions) 

need to be re-evaluated relative to the context of the analysis.  

The simulation studies that we have presented are limited in several ways, the most 

obvious being that we have examined only a fairly small set of models and, for models with 

more than a single variance component, only a subset of the full parameter space. Furthermore, 

we considered only one particular method for evaluating the covariance matrix of the variance 

component parameters, using an explicit formula for the expected information matrix of the 

restricted likelihood. The exact bias of the adjusted REML effect size estimator depends on this 

covariance (through the degrees of freedom correction), yet software packages differ in how the 

covariance matrix is estimated. When presenting the results of REML model estimation and 

effect size calculations, it would therefore prudent to also report the software version used to fit 

the model and the method used to estimate the covariance matrix of the variance component 

parameters.  

While this paper has focused on design-comparable effect sizes, we acknowledge that 

design-comparability is not the only or over-riding desideratum of effect sizes for use in single 

case research. Other effect sizes, including ones that are not identified in between-subjects 

designs, may be as useful or more useful as summaries of treatment effects from single-case 

studies. If scientific theory or empirical evidence suggests that a different metric better quantifies 

the underlying phenomenon being studied, its lack of design-comparability should not prevent its 

consideration. Still, we expect that the models and methods discussed in this paper will be useful 
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analytic tools for defining and estimating many sorts of effect sizes, and especially for 

understanding the comparability of effect sizes across different research designs. 

 

Notes: 

1. In the notation of Hedges et al. (Hedges et al., 2013), γ00 = μC, γ10 = μT - μC, η0i = ηi, and 

2 2

0  . 

2. The raw data are reported in Table 1 of Schutte et al. (Schutte et al., 2008). R code for the 

calculations reported in this section is available in the package scdhlm, which is 

included in the supplementary materials. 
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Table 1 

Model estimates for Schutte, et al. (2008) data 

 

Parameter 

MB3  

Estimate (s.e.) 

MB4  

Estimate (s.e.) 

MB5  

Estimate (s.e.) 

Variance components       

  Within-case var. ( 2̂ ) 99.00 (47.42) 29.39 (6.67) 22.54 (4.38) 

  Autocorrelation (̂ ) 0.81 (0.09) 0.40 (0.13) 0.24 (0.14) 

  Between-case var. ( 2

0̂ ) 14.77 (44.39) 95.71 (46.94) 38.30 (33.49) 

  Case-trend covariance ( 20̂ )   11.21 (6.37) 0.38 (3.51) 

  Trend variance ( 2

2̂ )   1.99 (1.08) 0.15 (0.57) 

  Case-Trt. × Trend cov. ( 30̂ )     1.74 (7.59) 

  Trend-Trt. × Trend cov. ( 32̂ )     0.67 (0.99) 

  Trt. × Trend variance (
3

2̂ )     3.01 (2.74) 

  Total variance ( 2 2

0̂
ˆ  ) 113.77 (29.80) 125.11 (46.78) 60.84 (32.88) 

       

Fixed effects       

   Intercept ( 00̂ ) 52.93 (4.42) 50.29 (4.07) 50.53 (2.82) 

   Treatment ( 10̂ ) -1.37 (1.97) -0.54 (1.75) 0.03 (1.60) 

   Weekly trend ( 20̂ ) 0.49 (0.62) 0.20 (0.62) 0.22 (0.36) 

   Trt. × Trend ( 30̂ ) -1.90 (0.94) -1.63 (0.66) -1.67 (0.74) 

   Trt. effect after 7 weeks ( ˆT
p γ ) -14.65 (6.34) -11.97 (4.61) -11.67 (5.18) 

       

Effect size       

   Unadjusted ( ˆ
AB ) -1.37  (0.64) -1.07 (0.50) -1.50 (0.93) 

   Adjusted (gAB) -1.34 (0.63) -1.01 (0.47) -1.33 (0.83) 

   Degrees of freedom (ν) 29.15  14.30  6.85  

   Constant κ 0.59  0.41  0.66  

       

Log-likelihood -435.09  -428.98  -424.51  
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Figure 1 

Multiple baseline data from Schutte, et al. (2008) 
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